Neuromuscular electrical stimulation: An underutilized modality that may aid in bridging the gender bias in ACLR recovery
Females suffer more ACL injuries than males and have a lower rate of return to sport while also a higher incidence of reinjury. Jessica Montgomery explains how neuromuscular electrical stimulation can level the playing field for post-ACLR female athletes.

April 2021 Paris St Germain’s Grace Geyoro in action with Barcelona’s Alexia Putellas REUTERS/Christian Hartmann
Anterior cruciate ligament (ACL) injuries occur two to eight times more often in females than males(1,2). While ACL injuries often happen while playing contact sports, over 70% of them result from noncontact situations(1). This fact is especially true for females for whom most injuries occur during maneuvers such as cutting, pivoting, or landing from a jump(1,3).
Not only are females at greater risk for initial ACL injury, but the likelihood of future injury further increases following ACL reconstruction (ACLR). Females who undergo ACLR are 16 times more likely than healthy female control subjects to suffer an additional ACL injury(4). When compared to male athletes, the female rate of injury following ACLR is six times greater(4).
Females may have a different response than males to standard ACLR physical therapy protocols(5). They are significantly weaker on a quadriceps index than males six months postoperatively, resulting in less readiness for return to sport(5). The difference in strength recovery may indicate a need for greater emphasis on gender-specific rehabilitation(6).
The gender bias that exists for ACL injury risk and recovery is likely multifactorial. Intrinsic factors include hormonal and structural differences, while extrinsic factors include neuromuscular and biomechanical variables (see table 1)(1,2,3). Since extrinsic factors like quadriceps strength are modifiable, physios should ensure optimal utilization of available interventions to help facilitate improved outcomes in these areas.
Table 1: Risk factors contributing to female ACL injury and reinjury(1,2,3)
INTRINSIC FACTORS | EXTRINSIC FACTORS |
Joint and Ligamentous Laxity | Muscular Strength |
· The female ACL is less stiff (lower modulus of elasticity), contributing to joint laxity, and fails at a lower load level (lower failure strength).
· Females’ elastin and collagen tissue may contribute to the completeness of ACL tears and scar formation.
| · After normalization for body weight, females are weaker than males in hip, quadriceps, and hamstring strength, contributing to reduced lower extremity joint stabilization.
· Males can generate higher forces in leg extensor muscles and produce those forces more quickly than females. |
Hormonal Influences | Muscular Activation Patterns |
· Women have more body fat and less lean body mass than males because of increased estrogens in the female and increased androgens in the males.
· There are estrogen receptors within the ACL. The ligament’s mechanical and molecular properties are likely influenced by estrogen and the interaction of several sex hormones, secondary messengers, remodeling proteins, and stresses.
· Fluctuations in hormones that occur throughout the menstruation cycle may increase ligament laxity and decreased neuromuscular control.
| · Females exhibit different quadriceps, hamstrings, and gastrocnemius muscle activation patterns than males. |
Structural Difference | Jumping and Landing Mechanics |
· Females have a wider pelvis, are more flexible, and have less developed musculature than men.
· Lower extremity alignment differs in the female and may predispose them to injury. | · Females tend to be in a more upright posture with less hip and knee flexion and their knees in more valgus angulation during cutting, landing, and squatting. |
NMES and arthrogenic muscle inhibition
One such intervention is the use of neuromuscular electrical stimulation (NMES) for improving quadriceps activation. Quadriceps weakness following ACLR is a routine finding regardless of gender and can be a significant barrier to effective rehabilitation. This muscle weakness is often due to a phenomenon called arthrogenic muscle inhibition (AMI), whereby muscle contraction is limited despite no structural damage to the muscle or innervating nerve(7). Rather, mechanisms of muscular inhibition include alteration in muscle resting motor thresholds, changes in the discharge of articular sensory receptors, altered spinal reflex excitability, and abnormal cortical activity(8). Failing to address AMI is associated with long-term quadriceps atrophy, gait abnormality, poor function, dynamic instability, persistent knee pain, and early osteoarthritis(8).
While most rehabilitation programs address AMI through therapeutic exercise, neuromuscular electrical stimulation (NMES), in addition to therapeutic exercise, may be more effective in improving quadriceps strength than exercise alone(9,10). When performed immediately postoperatively, NMES reduces skeletal muscle fiber atrophy and conserves contractility, often markedly reduced after surgery(11). Its use may also facilitate more rapid achievement of a higher quadriceps index, which allows for the earlier progression of training activities, i.e., agility drills(10). A quicker return to sport-specific training is especially important for female athletes who require more extensive training of other extrinsic factors, such as jumping and landing mechanics, before making a safe return to play.
Parameters
Unfortunately, NMES remains controversial and underutilized largely due to the lack of a standardized protocol. A systematic review of 8 randomized control trials found no consistent parameter set up, varying treatment duration from three to 11 weeks, and a range of treatment sessions from 12 to105(9). With so much variability, it is understandable why many physios shy away from the unknown. While a standardized protocol is pending, a summary of the literature does provide parameters based on current evidence (see table 2).
Table 2. Literature Review Based Recommendations for the use of NMES in ACLR(12)
PARAMETER | RECOMMENDATION BASED ON SYNTHESIS OF LITERATURE |
Limb Position | ~65 degrees knee flexion; less knee flexion may be used if better tolerated but is not as effective |
Electrode Placement | No standardized location is reported in the literature; areas used include: |
| · Proximally: femoral nerve or muscle belly of rectus femoris or vastus intermedius or vastus lateralis |
| · Distally: motor point of muscle belly of vastus medialis |
NMES waveform | Low-frequency biphasic or medium-frequency bust-modulated AC |
Frequency | 30-50 Hz PC or 2500 Hz AC in 50 Hz bursts |
Pulse Duration: | 250-400 µs |
Current Amplitude | Individual maximally tolerated intensity; minimum is strong but comfortable muscle contraction |
Work:Rest/On:Off Cycle | 6-10:12-50 seconds; use lower duty cycle (i.e. 1:3 or 1:5) if the muscle is weaker to limit fatigue |
Treatment Schedule | Initiate ideally within 1 week postoperatively |
Session Frequency | 3x/week over 4-6 weeks, particularly in the first 6 weeks postoperatively; may start as soon as postoperative day 1 |
Position the athlete with their knee in approximately 65 degrees of flexion (the resting length of the quadriceps) to facilitate maximal force production and optimal outcomes(12). Ideally, use an isokinetic machine or dynamometer to prevent any net extension torque(13). Otherwise, a patient can sit in a knee extension machine with the weight stack fully loaded to facilitate an isometric contraction. (see figure 1). If an athlete does not tolerate this amount of flexion in the early post-op phase, position them supine with 30 degrees of knee flexion using a bolster and belt (see figure 2). However, keep in mind that knee flexion less than 30 degrees produces inferior outcomes(12). If the patient experiences patellar discomfort with the knee in flexion (a common occurrence with patellar tendon autografts), position the knee in full extension (see figure 3)(10); however, use caution as this position places a high strain on the ACL(12).
Figure 1. Position of use at 65 degrees of knee flexion

Figure 2. Position of use at 30 degrees knee flexion

Figure 3. Position of use at 0 degrees knee flexion
Place the electrodes over motor points to minimize the electrical current needed to elicit a muscle contraction(14).Electrode placement on other sites requires a higher intensity current to reach the motor branch and may cause discomfort from the excitation of sensory fibers(14). Accordingly, larger electrodes generally result in a greater likelihood of appropriate placement and greater comfort for the patient.
Intensity should be set to maximal tolerance but must be high enough to elicit a muscular contraction(12). Adjust the duty cycle based on the athlete’s muscular endurance, which may vary based on the time since surgery and individual differences. To limit fatigue in those with considerable muscular strength and endurance deficits, use a lower duty cycle of 1:3 or 1:5. Time treatments to elicit a minimum of 10 muscular contractions per session(10,15).
Key takeaways
- Females are at greater risk than males for ACL injury and reinjury based on intrinsic and extrinsic factors(1,2,3).
- Females exhibit more significant quadriceps strength deficits than males following ACLR, which results in decreased readiness and likelihood of a successful return to play(5).
- Following ACLR, NMES combined with therapeutic exercise is more effective at improving quadriceps strength than therapeutic exercise alone(9,10).
- The use of NMES is indicated post-ACLR to augment volitional recruitment and strength of the quads and might be especially beneficial in the treatment of female athletes(12).
References
- J Orthop Sports Phys Ther 2007;37(2):A1–A32.
- All Volumes. 2006; 64.
- Clin Sports Med. 2004; 23:281-298.
- Clin J Sport Med. 2012;22(2):116-121
- 55th Annual Meeting of the Orthopedic Research Society: Poster No. 1954.
- Biomed Sci Instrum. 2005;41(323-328).
- J Neuroeng Rehab. 2012 Jul 12;16(1):89.
- Br J Sports Med. 2019;53:289-298.
- J Orthop Sports Phys Ther. 2010;40(7):383-391.
- J Orthop Sports Phys Ther. 2003;33(9):492-501.
- J. Sports Med. 2020;48(10): 2429–2437.
- Physiother Can. 2017;69(5):1-76.
- Phys Ther. 1988 May;68(5):660-3.
- J Neuroeng Rehab. 2014;11(17).
- Biomed Res Int. 2013;2013:802543.
Related
in Acute injuries, Diagnose & Treat, Hip injuries, Knee injuries, Leg injuries, Musculoskeletal injuries, Prevent, Strength, Uncommon injuries
An injury will, directly and indirectly, affect the entire kinetic chain. Therefore, practitioners should develop holistic clinical assessment and rehabilitation plans. Cameron Gill reviews the complex interplay between the hamstring injury and ACL rupture risk to aid clinical judgment and decision making. Over his first eight seasons, NBA sharpshooter Klay Thompson never missed more than... MORE
in Ankle and foot injuries, Diagnose & Treat, Improve, Knee injuries, Pre-hab and post-surgical rehab, Prevent
Artificial playing surfaces are contentious and remain a talking point in Sports and Exercise Medicine. Marianke van der Merwe uncovers the artificial surface injury risk and provides recommendations to mitigate the risk factors for athletes. Artificial turf was first introduced in the 1960s and has evolved significantly. There are three reasons for artificial turf. Firstly,... MORE
in Agility, Flexibility, Improve, Pre-hab and post-surgical rehab, Prevent, Speed development, Strength, Tools and technology
The role of deceleration on injury etiology and prevention continues to gather the attention of sports medicine practitioners. Understanding the deceleration demands of sport is essential in ensuring optimal prevention and rehabilitation of injuries. Helen Bayne uncovers the assessment of deceleration and provides practical tools for practitioners to improve the management of athletes. Deceleration is... MORE
in Improve, Power development, Pre-hab and post-surgical rehab, Prevent, Speed development, Strength, Tools and technology
Acceleration is the foundation of sports performance – the quicker, the better. However, injury severely impacts acceleration, and its restoration is essential to ensuring optimal performance. Helen Bayne discusses how practitioners can optimize rehabilitation to include acceleration as a critical component to athlete rehabilitation. The ability to rapidly increase running speed is a critical component... MORE
in Improve, Musculoskeletal injuries, Power development, Prevent, Proprioception and balance, Speed development, Strength, Tools and technology
The transferability of return to sport assessments and the development of rehabilitation programs based on the outcome of those tests is debatable. Candice MacMillan explores the dynamic correspondence of plyometric tests and outlines the clinical implications for rehabilitation professionals. Introduction In the world of Sport and Exercise Medicine (SEM), numerous technological devices can provide comparative,... MORE
in Ankle and foot injuries, Diagnose & Treat, Email Newsletters, Female Athletes, Hip injuries, Knee injuries, Leg injuries
Tennis – Australian Open – Women’s Doubles Final – Czech Republic’s Barbora Krejcikova and Katerina Siniakova celebrate with the trophy after winning their final match against Kazakhstan’s Anna Danilina and Brazil’s Beatriz Haddad Maia REUTERS/Morgan Sette Paper Title: The relationship between Landing Error Scoring System performance and injury in female collegiate athletes Publication: International Journal... MORE